Quantcast
Channel: Phys.org news tagged with:neutral atom
Viewing all 44 articles
Browse latest View live

Scientists directly measure charge states of atoms using an atomic force microscope

$
0
0
(PhysOrg.com) -- IBM scientists in collaboration with the University of Regensburg, Germany, and Utrecht University, Netherlands, for the first time demonstrated the ability to measure the charge state of individual atoms using noncontact atomic force microscopy. Measuring with the precision of a single electron charge and nanometer lateral resolution, researchers succeeded in distinguishing neutral atoms from positively or negatively charged ones.

Physicists Turn to Radio Dial for Finer Atomic Matchmaking

$
0
0
(PhysOrg.com) -- Investigating mysterious data in ultracold gases of rubidium atoms, scientists at the Joint Quantum Institute of the National Institute of Standards and Technology and the University of Maryland and their collaborators have found that properly tuned radio-frequency waves can influence how much the atoms attract or repel one another, opening up new ways to control their interactions.

FASTSAT instruments shipped for tests and launch preparation

$
0
0
Three of the satellite instruments that will fly on an upcoming satellite mission called "FASTSAT" have been created at one NASA center and have arrived at another for more tests to ensure they are flight ready for launch. They're now at the Marshall Space Flight Center in Huntsville, Ala. for further testing.

Basic quantum computing circuit built

$
0
0
(PhysOrg.com) -- Exerting delicate control over a pair of atoms within a mere seven-millionths-of-a-second window of opportunity, physicists at the University of Wisconsin-Madison created an atomic circuit that may help quantum computing become a reality.

Scientists isolate, hold, photograph individual Rubidium 85 atom

$
0
0
(PhysOrg.com) -- In a major physics breakthrough, University of Otago scientists have developed a technique to consistently isolate and capture a fast-moving neutral atom - and have also seen and photographed this atom for the first time.

MHI develops 12-inch wafer bonding machine capable of producing 3-D integrated LSI circuits at room temperature

$
0
0
Mitsubishi Heavy Industries Ltd (MHI) has developed the world's first fully automated 12-inch (300 millimeters) wafer bonding machine, dubbed the "Bond Meister MWB-12-ST," capable of producing 3-dimensionally integrated LSI (large-scale integration) circuits at room temperature. The company delivered the first unit to the National Institute of Advanced Industrial Science and Technology (AIST). Leveraging the new machine's ability to eliminate heat stress and strain in the bonding process and help achieve high productivity, MHI looks to contribute to efforts to further enhance the capacity and performance of LSIs, which currently face limitations in miniaturization.

$8.5 million research initiative will study best approaches for quantum memories

$
0
0
The U.S. Air Force Office of Scientific Research (AFOSR) has awarded $8.5 million to a consortium of seven U.S. universities that will work together to determine the best approach for generating quantum memories based on interaction between light and matter.

Scientists propose alternative method for the study of ions

$
0
0
Scientists at the Department of Physics of the University of Oulu have teamed up with scientists in France, Russia and Japan to propose a new experimental method for researching positively charged ions. The study, In the Finnish side carried out by postdoctoral researcher Saana-Maija Huttula and Professor Marko Huttula in Oulu, was published in Physical Review Letters on 12 March 2013. The study involved investigating the electronic structure of the argon ions using synchrotron radiation. The proposed theoretical simulations were done using methods developed by an electron spectroscopy research group based at the University of Oulu. The study was co-financed by the Academy of Finland.

Of grains and graphite: Simulating interstellar hydrogen formation

$
0
0
(Phys.org) —The process of molecular hydrogen formation is a key factor in astrophysics – specifically in the physics and chemistry of interstellar clouds. An electrically neutral atom containing a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force, hydrogen is the lightest element and, in its monatomic (unbound single atom) form, known as H1, is the most abundant chemical substance, constituting roughly 75% of the universe's baryonic mass (that is, excluding so-called dark matter and dark energy). Hydrogen formed at an early stage of the universe during expansion, when the temperature dropped enough to reduce the rate of ionization processes and triggered the plasma-neutral phase transition of the primordial gas. This, in turn, decoupled matter from radiation and led to the appearance of the cosmic background radiation.

Physicist tackles atomtronics

$
0
0
(PhysOrg.com) -- Atomtronics is a relatively new science devoted to creating artificial tailored materials consisting of neutral atoms held in an array with laser beams, or atoms moving along a desired track under electric or magnetic influence.

A magnetic approach to lattices

$
0
0
(Phys.org) -- JQI experimentalists under the direction of Ian Spielman are in the business of using lasers to create novel environments for neutral atoms. For instance, this research group previously enticed electrically neutral atoms to act like charged particles moving in magnetic and electric fields. The behavior of particles in strong electromagnetic fields, along with arbitrary control of the said fields, is central to both condensed matter physics, and quantum information science.

Discovery of the most distant galaxy in the cosmic dawn

$
0
0
A team of astronomers led by Takatoshi Shibuya, Dr. Nobunari Kashikawa, Dr. Kazuaki Ota, and Dr. Masanori Iye (National Astronomical Observatory of Japan) has used the Subaru and Keck Telescopes to discover the most distant galaxy ever found, SXDF-NB1006-2, at a distance of 12.91 billion light years from the Earth. This galaxy is slightly farther away than GN-108036, which Subaru Telescope discovered last year and was the most distant galaxy discovered at the time. In addition, the team's research verified that the proportion of neutral hydrogen gas in the 750-million-year-old early Universe was higher than it is today. These findings help us to understand the nature of the early Universe during the "cosmic dawn", when the light of ancient celestial objects and structures appeared from obscurity.

The sound in Saturn's rings: Physicists explain nonlinear dust acoustic waves in dusty plasmas

$
0
0
Dusty plasmas can be found in many places both in space and in the laboratory. Due to their special properties, dust acoustic waves can propagate inside these plasmas like sound waves in air, and can be studied with the naked eye or with standard video cameras. The Ruhr-Universitaet-Bochum physicists Prof. Dr. Dr. h.c. Padma Kant Shukla and Dr. Bengt Eliasson from the Faculty of Physics and Astronomy have published a model with which they describe how large amplitude dust acoustic waves in dusty plasmas behave.

New methods for ion cooling

$
0
0
Among the most important techniques developed in atomic physics over the past few years are methods that enable the storage and cooling of atoms and ions at temperatures just above absolute zero. Scientists from Bangalore and Mainz have now demonstrated in an experiment that captured ions can also be cooled through contact with cold atoms and may thus be stored in so-called ion traps in a stable condition for longer periods of time. This finding runs counter to predictions that ions would actually be heated through collisions with atoms. The results obtained by the joint Indo-German research project open up the possibility of conducting future chemical experiments to generate molecular ions at temperatures as low as those that prevail in interstellar space.

Accelerating neutral atoms on a table top

$
0
0
Conventional, as well as compact, laser-based particle acceleration schemes hinge on accelerating electric fields and are therefore ineffective for neutral atoms, which do not respond to these fields. Researchers at UPHILL lab at Tata Institute of Fundamental Research (India) have generated a table-top mega-electron-volt neutral atom source. The technique involves the stripping of eight electrons per Argon atom in a cluster, accelerate the ions and subsequently put back the electrons into the ions with 100 percent conversion efficiency.

New 'retention model' explains enigmatic ribbon at edge of solar system

$
0
0
(Phys.org)—The vast edges of our solar system—the boundary at the edge of our heliosphere where material streaming out from the sun interacts with the galactic material—is essentially invisible. It emits no light and no conventional telescope can see it. However, particles from inside the solar system bounce off this boundary and neutral atoms from that collision stream inward. Those particles can be observed by instruments on NASA's Interstellar Boundary Explorer (IBEX). Since those atoms act as fingerprints for the boundary from which they came, IBEX can map that boundary in a way never before done. In 2009, IBEX saw something in that map that no one could explain: a vast ribbon dancing across this boundary that produced many more energetic neutral atoms than the surrounding areas.

Quantum dot commands light: A solid state ultrafast logic gate on a photon

$
0
0
(Phys.org) —If you could peek at the inner workings of a computer processor you would see billions of transistors switching back and forth between two states. In optical communications, information from the switches can be encoded onto light, which then travels long distances through glass fiber. Researchers at the Joint Quantum Institute and the Department of Electrical and Computer Engineering are working to harness the quantum nature of light and semiconductors to expand the capabilities of computers in remarkable ways.

Green Pea galaxies could help astronomers understand early universe

$
0
0
The rare Green Pea galaxies discovered by the general public in 2007 could help confirm astronomers' understanding of reionization, a pivotal stage in the evolution of the early universe, say University of Michigan researchers.

'Going negative' pays for nanotubes: Team finds possible keys to better nanofibers, films

$
0
0
(Phys.org) —A Rice University laboratory's cagey strategy turns negatively charged carbon nanotubes into liquid crystals that could enhance the creation of fibers and films.

Five years of stereo imaging for NASA's TWINS

$
0
0
(Phys.org) —Surrounding Earth is a dynamic region called the magnetosphere. The region is governed by magnetic and electric forces, incoming energy and material from the sun, and a vast zoo of waves and processes unlike what is normally experienced in Earth-bound physics. Nestled inside this constantly changing magnetic bubble lies a donut of charged particles generally aligned with Earth's equator. Known as the ring current, its waxing and waning is a crucial part of the space weather surrounding our planet, able to induce magnetic fluctuations on the ground as well as to transmit disruptive surface charges onto spacecraft.
Viewing all 44 articles
Browse latest View live




Latest Images